Comparison of Internet Traffic Classification Tools

نویسندگان

  • Hyunchul Kim
  • Marina Fomenkov
  • kc claffy
  • Nevil Brownlee
  • Dhiman Barman
  • Michalis Faloutsos
چکیده

What is the best traffic classification method to date? Under what conditions? Why? Despite a plethora of research devoted to traffic classification and a variety of proposed traffic classification methods, the research community still does not have definitive answers to these questions, and the task of traffic classification remains unapproachable and confusing for a practitioner. Rigorous comparison of various classification methods is challenging for three reasons. First, there is no publicly available payload trace set, so every method is evaluated using a different set of locally collected payload traces. Second, existing approaches use different techniques that track different features, tune different parameters and use different definitions and categorization of applications. Third, more often than not, authors do not make their developed implementation codes publicly available once they publish their results. To address these challenges, we have conducted a comprehensive and coherent evaluation of three traffic classification approaches: port-based, behavior-based, and statistical. For each approach we selected a representative tool to test: CoralReef [1], BLINC [4], and WEKA [2], correspondingly. In this paper we present the results of our comparison, debunk traffic classification myths, identify caveats, and suggest practical tips.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A statistical approach to classify Skype traffic

Abstract- Skype is one of the most powerful and high-quality chat tools that allows its users to use of many services such as: transferring audio, sending messages, video conferencing and audio for free. Skype traffic has a lot of Internet traffic. Hence, Internet service providers need to identify traffic to do the quality of service and network management. On the other hand, Skype developers ...

متن کامل

Feature Extraction to Identify Network Traffic with Considering Packet Loss Effects

There are huge petitions of network traffic coming from various applications on Internet. In dealing with this volume of network traffic, network management plays a crucial rule. Traffic classification is a basic technique which is used by Internet service providers (ISP) to manage network resources and to guarantee Internet security. In addition, growing bandwidth usage, at one hand, and limit...

متن کامل

Online Self-learning Internet Traffic Classification based on Profile and Ontology

Internet traffic classification plays important roles in numerous areas such as network management, traffic engineering, QoS provisioning etc. Prior traffic analysis is an essential requirement for existing classification schemes to classify unknown traffic. To overcome the drawback of the previous classification scheme to meet the requirements of the network activities, we propose online self-...

متن کامل

Online Internet Traffic Classification Based on Proximal SVM

Online and accurate traffic classification is a key challenge for network management. Internet traffic classification based on flow statistics using machine learning method has attracted great attention. To solve the drawback of the previous classification scheme to meet the requirements of the network activities, our work mainly focuses on how to build an online Internet traffic classification...

متن کامل

Optimal Choice of Random Variables in D-ITG Traffic Generating Tool using Evolutionary Algorithms

Impressive development of computer networks has been required precise evaluation of efficiency of these networks for users and especially internet service providers. Considering the extent of these networks, there has been numerous factors affecting their performance and thoroughly investigation of these networks needs evaluation of the effective parameters by using suitable tools. There are se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007